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Executive Summary  
Evidence for the safety and efficacy of new medical devices can come from randomized controlled trials, 

which are costly to perform. Instead, prospective single arm studies are often used. Due to the high-risk 

nature of many implantable devices, and to the absence of specific guidance about sample sizes or 

minimum cumulative follow-up required, limited sample sizes are common. This practice implies 

substantial uncertainty of the resulting risk estimates. 

We aimed to provide a practical tool to give insight into the relation between sample size and the 

implications for the level of risk that is accepted. Given an event rate, the tool generates a graph displaying 

the relation between an upper bound to an n-year risk as function of the sample size. For example, for an 

event rate of 3%, an upper bound to the 5-year risk for varying hypothetical cumulative device experience 

with confidence of 95% can be generated with the calculator. In addition, the tool generates a nomogram 

for fixed sample size from which the upper bound can be read off, for different time periods and 

confidence levels. 

We employed Bayesian reasoning to compute these figures. We define a prior gamma distribution, which 

may be informed by knowledge on the medical area where the device is proposed. This distribution is 

updated with knowledge on the total observed cumulative device experience and the amount of device 

failures, in an on-line calculator. 

The calculator can currently be accessed via https://jwavanegeraat.shinyapps.io/RiskCalculator/. It can be 

used to understand the risks that are implicit in approving high-risk medical devices on the basis of 

cumulative experience (e.g., patient years) that is limited. The utility of insights provided by the calculator 

will now be tested by members of the CORE-MD consortium, so that the tool can be developed into a 

practical application. 

https://jwavanegeraat.shinyapps.io/RiskCalculator/
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1 Introduction 
To assess the efficacy and safety of pharmaceutical products, randomized clinical trials are the gold 

standard. They are also required to gain market approval by regulatory bodies such as the FDA and EMA. 

In contrast, current regulatory guidance does not mandate that medical devices require a randomized 

clinical trial for approval. In the EU, single-arm studies are sometimes considered sufficient to provide 

evidence on complications and failure rates of a new device, by the Notified Body undertaking its 

conformity assessment. 

A characteristic of device development is that incremental improvements are made upon previously 

developed devices. For drugs, one can modify the dosage but not change the structure of the active drug 

without having to demonstrate clinical efficacy once more. For medical devices, slightly changing the size, 

structure or material is relatively easy, and may improve their safety and/or efficacy. 
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2 Understanding risks of medical devices using a newly 
developed online calculator 

2.1 Device regulations 
Market access for high-risk medical devices in the EU is granted at EU-member level by designated 

organizations called notified bodies. The notified bodies assess the conformity of medical devices to 

applicable legal requirements. When a device is deemed safe and effective, it is given a certificate of 

conformity, which leads to CE-marking. Pre-defined specific clinical evidence requirements do not exist, 

other than generic high-level requirements that leave room for interpretation. A criticism is a lack of 

uniformity, transparency or adequacy of authorization procedures. 

For some classes of devices such as prosthetic heart valves, objective performance criteria (OPC) may be 

used for market approval. Commonly, they are derived from experience of previously approved heart 

valves. For example, we can use the average complication rate of a certain type of device as a reference. 

New iterations of these devices are compared to the OPCs, and they can be approved for market access 

if the failure rate of the new device is at least equivalent to the OPC. 

Demonstration that a new device meets the standard of a relevant OPC may be provided by a single-arm 

study, which avoids randomization and allows all patients to receive the device. This is statistically 

efficient, in the sense that single-arm trials require fewer patients than randomized trials.  

2.2 Risk calculator 
One of the current problems of using OPCs and single-arm studies for medical devices in general, is that 

the cumulative experience at the time of its regulatory approval is limited, despite the possible high-risk 

nature of devices. Thus, we aimed to provide regulators with an online tool that can help them to 

understand the sample size required to exclude an increased and/or unacceptable risk. One assumption 

is that the event rate observed from the single-arm study is equal to the true event rate of the medical 

device.  

To achieve these goals, we used Bayesian reasoning. This provides a formal framework to estimate risks 

based on empirically observed data. The Bayesian reasoning is treated with its mathematical background 

in Section 3, but a brief overview is given here. We assume that the failure time of a device (time to event) 

is characterized by exponential distribution with rate λ. This parameter is unknown, but is essentially the 

esteemed which the single-arm study intends to measure. Before the study is done, researchers may have 

some information on the quantity, based on prior knowledge from other studies from this device or similar 

devices. This uncertain information is captured in a prior distribution for the parameter λ. The Bayesian 

framework entails updating this prior with the likelihood of the observed data to gain a posterior 

distribution for the unknown parameter, reflecting both the prior information and the new information 

from the data. 
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The online tool uses a prior Gamma distribution for the event rate, whose hyperparameters should be 

determined by experts in the corresponding device field. We use a weakly informative prior as a reference, 

as shown in Figure 7. The prior distribution is updated with the observed event rate and the cumulative 

device experience. From this updated distribution, the graph and nomogram are generated. For the exact 

procedure, please see the code and the mathematical proof. 

We employed Bayesian reasoning to compute an upper bound to the risk after having observed the 

empirical event rate (observed number of events divided by the cumulative device experience). The user 

can decide at which time point the risk should be evaluated. The tool plots a graph of the upper bound to 

the n-year risk as a function of the hypothetical cumulative device experience in person-years. 

Additionally, a nomogram is drawn from which the user can read the event risk for different timepoints. 

In both figures, the assessor can review different confidence levels for the upper bound. 

2.3 Examples 
In the following section, we provide figures generated by the calculator from observed data in a single-

arm study of a real-world medical device that has been approved using an OPC. The example is used for 

illustrative purposes here. 

The Medtronic Avalus Bioprosthesis was granted both CE marking and FDA approval in 2017. The market 

approval is based on data from the single arm PERIGON Pivotal Trial. In the following, we use the FDA 

Summary of Safety and Effectiveness1. In Table 1 we summarize the number of occurrences of each event 

during 834 patient-years of observation. 

 

Adverse event Number of events Event rate 

Thromboembolism 14 0.017 

Valve thrombosis 0 0 

All hemorrhage 30 0.036 

    Major hemorrhage 21 0.025 

All paravalvular leak 5 0.006 

    Major paravalvular leak 0 0 

Endocarditis 11 0.013 
Table 1. Adverse events for Medtronic Avalus Bioprosthesis 

 

To showcase the use of the calculator, we generate the graphs corresponding to these results. In the 

following, we assume a prior Gamma distribution with hyperparameters α=1 and β=0 (see Figure 7). 

 
1 https://www.accessdata.fda.gov/cdrh_docs/pdf17/P170006B.pdf.  

https://www.accessdata.fda.gov/cdrh_docs/pdf17/P170006B.pdf
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2.3.1 Thromboembolism risk 

The following three graphs correspond to the risk of thromboembolism. Figures 1 and 2 show the lowest 

value (vertical axis) by which the risk of thromboembolism is upper bounded with y probability after 

having observed the event rate, as a function of the hypothetical cumulative device experience in person 

years (horizontal axis). The risk is evaluated after 1 year in Figure 1 and after 10 years in Figure 2.  

In Figure 3, the nomogram is displayed for this situation. We have drawn an isopleth from the first axis at 

90% to the last axis at 5 years. Thus, after observing the results from the single-arm study, there is a 90% 

probability that the risk, for an individual patient with this device, of thromboembolism after 5 years is 

not greater than approximately 0.11. 

 

 

Figure 1. Upper bound to risk of thromboembolism after 1 year as function of cumulative device experience, after observing 
an event rate of 0.017 in 834.2 patient years. 
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Figure 2. Upper bound to risk of thromboembolism after 10 years as function of cumulative device experience, after observing 
an event rate of 0.017 in 834.2 patient years. 

 

 

Figure 3. Nomogram for upper bound to risk of thromboembolism after observing an event rate of 0.017 in 834.2 patient years. 
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2.3.2 Hemorrhage risk 

In this section, we generate graphs for all hemorrhage events. There were 30 cases of hemorrhage in 834 

patient-years, resulting in an event rate of 3.6% (Table 1). In Figures 4 and 5 the upper bound to the risk 

after respectively 3 and 5 years is plotted as a function of hypothetical sample size. In Figure 6, the 

nomogram is displayed for this study. We have drawn an isopleth from the first axis at 50% to the last axis 

at 3 years. Thus, after observing the failure rate of 3.6% from 834 patient years, there is a 50% probability 

that the risk of any hemorrhage after 3 years for a new patient with this device is not greater than 

approximately 0.1. 

 

Figure 4. Upper bound to risk of hemorrhage after 3 years as function of cumulative device experience, after observing an 
event rate of 0.036 in 834.2 patient years. 
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Figure 5. Upper bound to risk of hemorrhage after 5 years as a function of cumulative device experience, after observing an 
event rate of 0.036 in 834.2 patient-years. 

 

 

Figure 6. Nomogram for upper bound to risk of hemorrhage after observing an event rate of 0.036 in 834.2 patient-years. 
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2.4 Discussion 
Market approval for medical devices is often based on small-scale single-arm studies. Pre-defined clinical 

evidence requirements do not exist or are generic requirements that leave room for interpretation by the 

notified bodies and other organizations in charge of assessing device quality. 

We have used Bayesian reasoning to create an online tool to assist the notified bodies with understanding 

the risk that can be accepted when the cumulative device experience is limited.  

Limitations of the calculator include the choice of parameters in the prior distribution. A Bayesian 

perspective is needed to allow for a proper interpretation of the probability that a device does not have 

risks above a certain number, for example a 3% annual risk. A challenge for such a perspective is the 

definition of a prior distribution: what is a plausible picture of the clinical setting; what risks are plausible, 

and what is an extreme risk that cannot be anticipated? A classic idea is to specify ‘uninformative’ priors, 

which contain limited information. This implies that as soon as real data are observed, the posterior 

estimate is very close to the observed estimate. In our examples we assumed a prior with parameters α = 

1 and β = 0, which we consider ‘weakly informative’. 

For further work, we envision that testing in concrete clinical use cases is necessary, in collaboration with 

relevant stakeholders, including policy makers, regulators and clinicians. 
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3 Mathematical Proof 
In this section, we give a short overview on the Gamma distribution and a mathematical treatise of the 

calculator. 

3.1 Gamma distribution 
The Gamma distribution is characterized the shape parameter α and the rate parameter β. Its probability 

density function is given by 

𝑓(𝑥) =  
𝛽𝛼

Γ(𝛼)
𝑥𝛼−1𝑒−𝛽𝑥. 

 
In figure 7, a Gamma distribution is displayed, with parameters α and β equal to 1. 

 

Figure 7. Gamma distribution with α =1, β = 0 

 

3.2 Mathematical Proof of Calculator 
Let 𝑻 denote the failure time of interest and 𝑺 the censoring time. Let 

(𝑻𝟏, 𝑺𝟏), . . . , (𝑻𝒏, 𝑺𝒏) 

be 𝒏 independent and identically distributed pairs of variables such that (𝑻𝒊, 𝑺𝒊) has the same distribution 

as (𝑻, 𝑺) for all 𝒊. 
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We assume 𝑻 takes the exponential distribution with rate parameter 𝝀, i.e., 

𝑷(𝑻 ≤ 𝒕) = 𝟏 − 𝐞𝐱𝐩(−𝝀𝒕), for all 𝒕 ≥ 𝟎, 

and we denote by 𝜽 the parameter fully characterising the distribution of 𝑺. We assume independent 

censoring, e.g. (𝑻, 𝝀) ⫫ (𝑺, 𝜽) for all 𝒊. 

Rather than observing (𝑻𝒊, 𝑺𝒊), we observe 𝑻𝒊
∗ = 𝐦𝐢𝐧{𝑻𝒊, 𝑺𝒊} and 𝜹𝒊 = 𝑰(𝑻𝒊 ≤ 𝑺𝒊). We use boldface to 

denote vectors of variables, e.g. 𝑻∗ = (𝑻𝟏
∗ , … , 𝑻𝒏

∗ ). Further, define 𝑿 = (𝑻∗, 𝛅). 

We will begin by showing the relation between the posterior and prior distributions for 𝝀. 

𝒑𝝀|𝐗(𝝀|𝒙) = ∫ 𝒑(𝝀,𝜽)|𝐗(𝝀, 𝜽|𝒙) 𝐝𝛉

∝ ∫ 𝒑𝝀(𝝀)𝒑𝜽(𝜽)𝒑𝐗|(𝝀,𝜽)(𝐱|𝝀, 𝜽) 𝐝𝛉,                                                               since 𝝀 ⫫ 𝜽

= ∫ 𝒑𝝀(𝝀)𝒑𝜽(𝜽)∏𝒑(𝑻∗,𝜹)|(𝝀,𝜽)

𝒏

𝒊=𝟏

(𝒕𝒊
∗, 𝒅𝒊|𝝀, 𝜽) 𝐝𝛉,                   by the i.i.d. assumption

= ∫ 𝒑𝝀(𝝀)𝒑𝜽(𝜽)∏[𝒑𝑻|𝝀(𝒕𝒊
∗|𝝀)𝐏𝐫(𝑺 ≥ 𝒕𝒊

∗|𝜽)]
𝒅𝒊

𝒏

𝒊=𝟏

[𝐏𝐫(𝑻 > 𝒕𝒊
∗|𝝀)𝒑𝑺|𝜽(𝒕𝒊

∗|𝜽)]
𝟏−𝒅𝒊  𝐝𝛉,

∝ 𝒑𝝀(𝝀)∏[𝒑𝑻|𝝀(𝒕𝒊
∗|𝝀)]

𝒅𝒊

𝒏

𝒊=𝟏

[𝐏𝐫(𝑻 > 𝒕𝒊
∗|𝝀)]𝟏−𝒅𝒊

= 𝒑𝝀(𝝀)∏𝝀𝒅𝒊

𝒏

𝒊=𝟏

𝐞𝐱𝐩[−𝝀𝒕𝒊
∗]𝒅𝒊𝐞𝐱𝐩[−𝝀𝒕𝒊

∗]𝟏−𝒅𝒊

= 𝒑𝝀(𝝀)∏𝝀𝒅𝒊

𝒏

𝒊=𝟏

𝐞𝐱𝐩[−𝝀]𝒕𝒊
∗

= 𝒑𝝀(𝝀)𝝀∑ 𝒅𝒊
𝒏
𝒊=𝟏 𝐞𝐱𝐩[−𝝀]∑ 𝒕𝒊

∗𝒏
𝒊=𝟏 .

 

This shows that the posterior density of 𝝀 given 𝑬 := ∑ 𝑻𝒊
∗𝒏

𝒊=𝟏  and 𝑹 := ∑ 𝜹𝒊
𝒏
𝒊=𝟏 /𝑬 is equal to 

𝝅(𝝀)𝝀𝑹𝑬𝐞𝐱𝐩[−𝝀]𝑬 

up to a proportionality constant, where 𝝅 is the prior density function of 𝝀. 

3.3 Posterior density of λ under Gamma (conjugate) prior distribution 
Suppose our prior belief on 𝝀 is given by a Gamma distribution with parameters 𝜶 > 𝟎 (shape) and 𝜷 > 𝟎 

(rate): 

𝝅(𝝀) =
𝜷𝜶

𝜞(𝜶)
𝝀𝜶−𝟏𝐞𝐱𝐩[−𝝀𝜷]

∝ 𝝀𝜶−𝟏𝐞𝐱𝐩[−𝝀𝜷].
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Our posterior density then satisfies 

𝒑𝝀|(𝑬,𝑹)(𝝀|𝒆, 𝒓) ∝ 𝝅(𝝀)𝝀𝑹𝑬𝐞𝐱𝐩[−𝝀]𝑬

∝ 𝝀𝜶−𝟏𝐞𝐱𝐩[−𝝀𝜷]𝝀𝑹𝑬𝐞𝐱𝐩[−𝝀𝑬]

= 𝝀(𝑹𝑬+𝜶)−𝟏𝐞𝐱𝐩[−𝝀(𝑬 + 𝜷)],

 

and so 

𝝀|(𝑬, 𝑹) ∼ 𝐆𝐚𝐦𝐦𝐚(𝑹𝑬 + 𝜶,𝑬 + 𝜷). 

 

3.4 Quantile function of t-year risk for fixed t and observed event 
rate 

We will now demonstrate how the previous helps us to generate a graph as shown in Figures 1, 2, 4 and 

5 in the main text. 

Fix the time at which we wish to evaluate the risk at 𝒕, fix 𝑹 at 𝒓 and also fix hyperparameters 𝜶,𝜷. We 

wish to depict for various levels 𝒆 of 𝑬, the lowest value by which the risk 𝐑𝐢𝐬𝐤(𝝀) := 𝐏𝐫(𝑻 ≤ 𝒕|𝝀) = 𝟏 −

𝐞𝐱𝐩[−𝝀𝒕] is upper bounded with 𝜸% posterior probability. With 𝑸(𝜸, 𝒆) defined as 

𝐦𝐢𝐧{𝒖: 𝐏𝐫(𝐑𝐢𝐬𝐤(𝝀) ≤ 𝒖|𝑹 = 𝒓, 𝑬 = 𝒆) ≥ 𝜸%}, this means that we wish to depict the relationship 

between 𝑸(𝜸, 𝒆), 𝜸 and 𝒆. 

Now, 𝐑𝐢𝐬𝐤(𝝀) = 𝐏𝐫(𝑻 ≤ 𝒕|𝝀) = 𝟏 − 𝐞𝐱𝐩[−𝝀𝒕], so 𝛛𝐑𝐢𝐬𝐤(𝝀)/𝛛𝝀 = 𝒕𝐞𝐱𝐩[−𝝀𝒕] and so 𝐑𝐢𝐬𝐤(𝝀) is 

strictly increasing over 𝝀 ∈ (𝟎,+∞) if 𝒕 > 𝟎. Letting 𝐑𝐢𝐬𝐤−𝟏(𝒖) = −𝐥𝐨𝐠[𝟏 − 𝒖]/𝒕 for all 𝒖, it follows that 

𝑸(𝜸, 𝒆) = 𝐦𝐢𝐧{𝒖:𝐏𝐫(𝐑𝐢𝐬𝐤(𝝀) ≤ 𝒖|𝑹 = 𝒓, 𝑬 = 𝒆) ≥ 𝜸%}

= 𝐦𝐢𝐧{𝒖:𝐏𝐫(𝝀 ≤ 𝐑𝐢𝐬𝐤−𝟏(𝒖)|𝑹 = 𝒓, 𝑬 = 𝒆) ≥ 𝜸%}

= 𝐦𝐢𝐧{𝐑𝐢𝐬𝐤(𝒗):𝐏𝐫(𝝀 ≤ 𝐑𝐢𝐬𝐤−𝟏(𝐑𝐢𝐬𝐤(𝒗))|𝑹 = 𝒓, 𝑬 = 𝒆) ≥ 𝜸%}

= 𝐦𝐢𝐧{𝐑𝐢𝐬𝐤(𝒗):𝐏𝐫(𝝀 ≤ 𝒗|𝑹 = 𝒓, 𝑬 = 𝒆) ≥ 𝜸%}

= 𝐑𝐢𝐬𝐤(𝐦𝐢𝐧{𝒗:𝐏𝐫(𝝀 ≤ 𝒗|𝑹 = 𝒓, 𝑬 = 𝒆) ≥ 𝜸%})

= 𝐑𝐢𝐬𝐤(𝑸∗(𝜸, 𝒆)),

 

where 𝑸∗(𝜸, 𝒆) = 𝐦𝐢𝐧{𝒗: 𝐏𝐫(𝝀 ≤ 𝒗|𝑹 = 𝒓, 𝑬 = 𝒆) ≥ 𝜸%}, the quantile function of the gamma 

distribution with parameters 𝒓𝒆 + 𝜶 and 𝒆 + 𝜷. Thus, 

𝑸(𝜸, 𝒆) = 𝟏 − 𝐞𝐱𝐩[−𝑸∗(𝜸, 𝒆)𝒕]. 

This can be plotted using statistical software such as R. 
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3.5 Quantile function of t-year risk for fixed observed event rate and 
cumulative person-time 

In this section, we show that we are able to summarize the results in a nomogram, like in Figures 3 and 6 

in the main text. 

First, fix 𝑹 at 𝒓 and 𝑬 at 𝒆 and also fix hyperparameters 𝜶,𝜷. Using the arguments above, we can express, 

as a function of time horizon 𝒕 and parameter 𝜸, the lowest value by which the risk 𝐑𝐢𝐬𝐤(𝝀, 𝒕)

:= 𝐏𝐫(𝑻 ≤ 𝒕|𝝀) is upper bounded with 𝜸% prior/posterior probability. To this end, redefine 𝑸 as a 

function of 𝜸 and 𝒕 such that 𝑸(𝜸, 𝒕) = 𝐦𝐢𝐧{𝒖: 𝐏𝐫(𝐑𝐢𝐬𝐤(𝝀, 𝒕) ≤ 𝒖|𝑹 = 𝒓|𝑬 = 𝒆) ≥ 𝜸%} and likewise 

redefine 𝑸∗ as function of 𝜸 such that 𝑸∗(𝜸) = 𝐦𝐢𝐧{𝒗: 𝐏𝐫(𝝀 ≤ 𝒗|𝑹 = 𝒓, 𝑬 = 𝒆) ≥ 𝜸%}. Then, 

𝑸(𝜸, 𝒕) = 𝟏 − 𝐞𝐱𝐩[−𝑸∗(𝜸)𝒕],   i.e.,

𝐥𝐨𝐠{−𝐥𝐨𝐠[𝟏 − 𝑸(𝜸, 𝒕)]} = 𝐥𝐨𝐠(𝑸∗(𝜸)) + 𝐥𝐨𝐠(𝒕),   or

𝒉(𝑸(𝜸, 𝒕)) = 𝒇(𝜸) + 𝒈(𝒕),

 

where 𝒉(𝒙) = 𝐥𝐨𝐠[−𝐥𝐨𝐠(𝟏 − 𝒙)] for 𝒙 ∈ (𝟎, 𝟏), 𝒇(𝒙) = 𝐥𝐨𝐠(𝑸∗(𝒙)) for 𝒙 ∈ (𝟎, 𝟏𝟎𝟎), and 𝒈(𝒙) =

𝐥𝐨𝐠(𝒙) for 𝒙 > 𝟎. 

In what follows we show that relationships of this form, i.e., 𝑪 = 𝑨 + 𝑩, can be represented by a standard 

nomogram with three parallel scales. We embed the nomogram within a Cartesian coordinate system on 

a plane and stipulate (1) that each value 𝑨 on the 𝑨-scale (e.g., 𝑨 = 𝒇(𝜸)) has coordinates (𝒙𝟏(𝑨), 𝒚𝟏(𝑨)) 

with 𝒙𝟏(𝑨) = 𝟎 and 𝒚𝟏(𝑨) = (𝑨 − 𝒍𝑨)/(𝒖𝑨 − 𝒍𝑨) for fixed constants 𝒍𝑨, 𝒖𝑨; (2) that each value 𝑪 on the 

𝑪-scale (e.g., 𝑪 = 𝒉(𝑸(𝜸, 𝒕))) has coordinates (𝒙𝟐(𝑪), 𝒚𝟐(𝑪)); and (3) that each value 𝑩 on the 𝑩-scale 

(e.g., 𝑩 = 𝒈(𝒕)) has coordinates (𝒙𝟑(𝑩), 𝒙𝟑(𝑩)) with 𝒙𝟑(𝑩) = 𝟏 and 𝒚𝟑(𝑩) = (𝑩 − 𝒍𝑩)/(𝒖𝑩 − 𝒍𝑩) for 

fixed constants 𝒍𝑩, 𝒖𝑩. We require that a straight line intersecting the 𝑨- and 𝑩-scales (the outer scales) 

at arbitrary points (𝒙𝟏(𝑨), 𝒚𝟏(𝑨)) and (𝒙𝟑(𝑩), 𝒚𝟑(𝑩)), respectively, intersects the 𝑪-scale (the middle 

scale) at (𝒙𝟐(𝑪), 𝒚𝟐(𝑪)), so that   

𝒚𝟑(𝑩)−𝒚𝟐(𝑪)

𝒙𝟑(𝑩)−𝒙𝟐(𝑪)
=

𝒚𝟐(𝑪)−𝒚𝟏(𝑨)

𝒙𝟐(𝑪)−𝒙𝟏(𝑨)
,

⇔  𝒙𝟏(𝑨)𝒚𝟐(𝑪) + 𝒙𝟑(𝑩)𝒚𝟏(𝑨) + 𝒙𝟐(𝑪)𝒚𝟑(𝑩) − 𝒙𝟑(𝑩)𝒚𝟐(𝑪) − 𝒙𝟐(𝑪)𝒚𝟏(𝑨) − 𝒙𝟏(𝑨)𝒚𝟑(𝑩) = 𝟎,

⇔  𝐝𝐞𝐭 [

𝒙𝟏(𝑨) 𝒚𝟏(𝑨) 𝟏

𝒙𝟐(𝑪) 𝒚𝟐(𝑪) 𝟏

𝒙𝟑(𝑩) 𝒚𝟑(𝑩) 𝟏
] = 𝟎.

   

By stipulation, this requirement becomes 
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𝟎 = 𝐝𝐞𝐭

[
 
 
 
 
 𝟎

𝑨 − 𝒍𝑨
𝒖𝑨 − 𝒍𝑨

𝟏

𝒙𝟐(𝑪) 𝒚𝟐(𝑪) 𝟏

𝟏
𝑩 − 𝒍𝑩
𝒖𝑩 − 𝒍𝑩

𝟏
]
 
 
 
 
 

= (𝟏 − 𝒙𝟐(𝑪))
𝑨 − 𝒍𝑨
𝒖𝑨 − 𝒍𝑨

+ 𝒙𝟐(𝑪)
𝑩 − 𝒍𝑩
𝒖𝑩 − 𝒍𝑩

− 𝒚𝟐(𝑪),

𝒚𝟐(𝑪) = (𝟏 − 𝒙𝟐(𝑪))
𝑨 − 𝒍𝑨
𝒖𝑨 − 𝒍𝑨

+ 𝒙𝟐(𝑪)
𝑩 − 𝒍𝑩
𝒖𝑩 − 𝒍𝑩

.

 

 

Letting 𝒙𝟐(𝑪) = (𝒖𝑩 − 𝒍𝑩)/[(𝒖𝑨 − 𝒍𝑨) + (𝒖𝑩 − 𝒍𝑩)], we have 

𝒚𝟐(𝑪) =
𝒖𝑨 − 𝒍𝑨

(𝒖𝑨 − 𝒍𝑨) + (𝒖𝑩 − 𝒍𝑩)

𝑨 − 𝒍𝑨
𝒖𝑨 − 𝒍𝑨

+
𝒖𝑩 − 𝒍𝑩

(𝒖𝑨 − 𝒍𝑨) + (𝒖𝑩 − 𝒍𝑩)

𝑩 − 𝒍𝑩
𝒖𝑩 − 𝒍𝑩

=
(𝑨 + 𝑩) − (𝒍𝑨 + 𝒍𝑩)

(𝒖𝑨 + 𝒖𝑩) − (𝒍𝑨 + 𝒍𝑩)

=
𝑪 − (𝒍𝑨 + 𝒍𝑩)

(𝒖𝑨 + 𝒖𝑩) − (𝒍𝑨 + 𝒍𝑩)
,

 

as desired. 

In summary, we have constructed a nomogram with parallel scales depicting the relationship between 

𝑸(𝜸, 𝒕), 𝜸 and 𝒕. The scales have coordinates 

𝒙𝟏(𝑨) = 𝟎,

𝒚𝟏(𝑨) =
𝑨 − 𝒍𝑨
𝒖𝑨 − 𝒍𝑨

,

𝒙𝟐(𝑪) =
𝒖𝑩 − 𝒍𝑩

(𝒖𝑨 − 𝒍𝑨) + (𝒖𝑩 − 𝒍𝑩)
,

𝒚𝟐(𝑪) =
𝑪 − (𝒍𝑨 + 𝒍𝑩)

(𝒖𝑨 + 𝒖𝑩) − (𝒍𝑨 + 𝒍𝑩)
,

𝒙𝟑(𝑩) = 𝟏,

𝒚𝟑(𝑩) =
𝑩 − 𝒍𝑩
𝒖𝑩 − 𝒍𝑩

,

 

where 

𝑨 = 𝐥𝐨𝐠(𝑸∗(𝜸)),

𝑩 = 𝐥𝐨𝐠(𝒕),

𝑪 = 𝐥𝐨𝐠(−𝐥𝐨𝐠[𝟏 − 𝑸(𝜸, 𝒕)]).
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4 Source Code Calculator 
The calculator was programmed in R [1] with the Shiny app package2. Once compiled, the result is an 
interactive web app which can be published online and accessed by anyone with the link. The code for the 
calculator is given here. 
 

4.1 R code 
extra <- c(0,0) 
pagewidth <- (100+2*extra[1])*scale # in mm 
pageheight <- (100+2*extra[2])*scale 
mm2inch <- function(mm) mm/25.4 
 
plot1 <- function(alpha,beta,r,t,e,gamma){ 
  Risk <- function(lambda,t) 1-exp(-lambda*t) 
  Qstar <- function(gamma,r,e) qgamma(gamma/100,shape=r*e+alpha,rate=e+beta) 
  Q <- function(gamma,r,e,t) Risk(Qstar(gamma,r,e),t) 
   
  cropMargin <- (c(3,3,3,3)+extra[c(2,1,2,1)])*scale # c(bottom,left,top,right) 
  margin <- c(5,5,5,5)*scale # c(bottom,left,top,right) 
  # derivatives 
  framewidth <- pagewidth-sum(cropMargin[c(2L,4L)]) 
  frameheight <- pageheight-sum(cropMargin[c(1L,3L)]) 
  frame <- list( 
    x=cropMargin[2L]+framewidth*c(0L,0L,1L,1L,0L), 
    y=cropMargin[1L]+frameheight*c(0,1L,1L,0L,0L) 
  ) 
  textframewidth <- pagewidth-sum(margin[c(2L,4L)])-sum(cropMargin[c(2L,4L)]) 
  textframeheight <- pageheight-sum(margin[c(1L,3L)])-sum(cropMargin[c(1L,3L)]) 
  textframe <- list( 
    x=cropMargin[2L]+margin[2L]+textframewidth*c(0L,0L,1L,1L,0L), 
    y=cropMargin[1L]+margin[1L]+textframeheight*c(0,1L,1L,0L,0L) 
  ) 
  textheight <- diff(range(textframe$y)) 
  textwidth <- diff(range(textframe$x)) 
  tcl <- cropMargin[1L]/2 
  vCropTicks <- data.frame( 
    x0=cropMargin[2L]+(pagewidth-sum(cropMargin[c(2L,4L)]))*c(0,1,1,0), 
    x1=cropMargin[2L]+(pagewidth-sum(cropMargin[c(2L,4L)]))*c(0,1,1,0), 
    y0=c(0,pageheight-tcl)[c(1L,1L,2L,2L)], 
    y1=c(0,pageheight-tcl)[c(1L,1L,2L,2L)]+tcl 
  ) 
  hCropTicks <- data.frame( 
    x0=c(0,pagewidth-tcl)[c(1L,1L,2L,2L)], 
    x1=c(0,pagewidth-tcl)[c(1L,1L,2L,2L)]+tcl, 
    y0=cropMargin[1L]+(pageheight-sum(cropMargin[c(1L,3L)]))*c(0,1,1,0), 
    y1=cropMargin[1L]+(pageheight-sum(cropMargin[c(1L,3L)]))*c(0,1,1,0) 
  ) 
  #lapply(vCropTicks,range) 
  #lapply(hCropTicks,range) 

 
2 https://shiny.rstudio.com/reference/shiny/1.7.0/.  

https://shiny.rstudio.com/reference/shiny/1.7.0/
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  # plotting 
  #dev.new(width=mm2inch(pagewidth),height=mm2inch(pageheight)) 
  par(mar=rep(0,4L)) 
  #par(family="Palatino") 
  par(family="Times") # or download other fonts 
  plot(c(0,pagewidth),c(0,pageheight),type='n',axes=FALSE,xlab='',ylab='',bty='n',yaxs='i',xaxs='i') 
  if(FALSE){ 
    lines(frame,lty=2,lwd=.2) 
    lines(textframe,lwd=.2) 
    do.call(function(...) segments(...,lwd=.2),vCropTicks) 
    do.call(function(...) segments(...,lwd=.2),hCropTicks) 
  } 
  dx <- diff(range(textframe$x)) 
  dy <- diff(range(textframe$y)) 
  targetframe <- list(x=min(textframe$x)+c(0.1,0.1,1,1,0.1)*dx,y=min(textframe$y)+c(.08*dx,dy,dy,.08*dx,.08*dx)) 
  #lines(targetframe,lwd=.2) 
  convert <- function(x,y,current=list(x=c(0,0,1,1,0),y=c(0,1,1,0,0)),target=targetframe){ 
    ry <- (y-min(current$y))/diff(range(current$y)) 
    ny <- ry*diff(range(target$y))+min(target$y) 
    rx <- (x-min(current$x))/diff(range(current$x)) 
    nx <- rx*diff(range(target$x))+min(target$x) 
    return(data.frame(x=nx,y=ny)) 
  } 
  f <- function(gamma) Q(gamma,r=r,e=e,t=t) 
  ylim <- c(10^floor(log(min(f(min(gamma))),10)),1) 
  xlim <- range(e) 
  current <- list(x=xlim[c(1,1,2,2,1)],y=log(ylim[c(1,2,2,1,1)],10)) 
  pretty <- function(x){ 
   y <- base::pretty(x) 
   y[y>=min(x)&y<=max(x)] 
  } 
  vGridLines <- data.frame(x0=pretty(xlim),y0=log(ylim[1],10),y1=log(ylim[2],10))  
  vGridLines[,1:2] <- with(vGridLines,convert(x0,y0,current)) 
  vGridLines[,3] <- with(vGridLines,convert(x0,y1,current))$y 
  w <- which(abs(vGridLines$x0-min(targetframe$x))<1e-2) 
  if(length(w)) vGridLines <- vGridLines[-w,] 
  with(vGridLines,segments(x0=x0,y0=y0,y1=y1,col="lightgrey")) 
  hGridLines <- hGridLines0 <- data.frame(x0=xlim[1],x1=xlim[2],y0=pretty(log(ylim,10))) 
  hGridLines[,2:3] <- with(hGridLines,convert(x1,y0,current)) 
  hGridLines[,1] <- with(hGridLines,convert(x0,y0,current))$x 
  w <- which(abs(hGridLines$y0-min(targetframe$y))<1e-2) 
  if(length(w)) hGridLines <- hGridLines[-w,] 
  with(hGridLines,segments(x0=x0,x1=x1,y0=y0,col="lightgrey")) 
  # secondary horizontal grid lines 
  y0 <- 10^hGridLines0$y0 
  y1 <- unlist(lapply(seq_along(y0[-1]),function(i)y0[i]*(2:9))) 
  y1 <- y1[y1>=ylim[1]&y1<=ylim[2]] 
  hGridLines2 <- data.frame(x0=xlim[1],x1=xlim[2],y0=log(y1,10)) 
  hGridLines2[,2:3] <- with(hGridLines2,convert(x1,y0,current)) 
  hGridLines2[,1] <- with(hGridLines2,convert(x0,y0,current))$x 
  with(hGridLines2,segments(x0=x0,x1=x1,y0=y0,col="lightgrey")) 
  # 
  xAxis <- convert(x=xlim,y=rep(log(min(ylim[1]),10),2),current) 
  lines(xAxis) 
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  yAxis <- convert(x=rep(xlim[1],2),y=log(ylim,10),current) 
  lines(yAxis) 
  ly <- diff(range(current$y))/50 
  lx <- diff(range(current$x))/50 
  vTicks <- data.frame(x0=pretty(xlim),y0=log(ylim[1],10),y1=log(ylim[1],10)-ly)  
  vTicks[,1:2] <- with(vTicks,convert(x0,y0,current)) 
  vTicks[,3] <- with(vTicks,convert(x0,y1,current))$y 
  with(vTicks,segments(x0=x0,y0=y0,y1=y1)) 
  hTicks <- data.frame(x0=xlim[1],x1=xlim[1]-lx,y0=pretty(log(ylim,10))) 
  hTicks[,2:3] <- with(hTicks,convert(x1,y0,current)) 
  hTicks[,1] <- with(hTicks,convert(x0,y0,current))$x 
  with(hTicks,segments(x0=x0,x1=x1,y0=y0)) 
  #txt <- paste0(formatC(pretty(ylim),format="f",digits=1)) 
  txt <- paste0("bquote(1/10^{\"",formatC(abs(pretty(log(ylim,10))),format="f",digits=1),"\"})") 
  #with(convert(xlim[1]-1.5*lx,pretty(log(ylim,10)),current),text(x,y,"1",adj=c(1,.5),cex=.8)) 
  for(i in seq_along(txt)) with(convert(xlim[1]-1.5*lx,pretty(log(ylim,10)),current), 
    text(x[i],y[i],eval(parse(text=txt[i])),adj=c(1,.5),cex=.8)) 
  txt <- pretty(xlim) 
  with(convert(pretty(xlim),log(ylim[1],10)-1.5*ly,current),text(x,y,txt,adj=c(.5,1),cex=.8)) 
  with(convert(xlim[1]-9.5*lx,mean(log(ylim,10)),current),text(x-2,y,srt=90,bquote("Smallest "*.(t)*"-year risk that can be 
excluded with "*gamma*"% probability"),adj=c(.5,1),cex=.8)) 
  with(convert(mean(xlim),log(ylim[1],10)-6*ly,current),text(x,y,srt=0,"Cumulative device experience (person-
years)",adj=c(.5,0),cex=.8)) 
  l <- length(gamma)+1 
  cols <- rev(sapply(seq(0,1,length=l)[-l],function(x)rgb(x,x,x,maxColorValue=1))) 
  for(i in seq_along(gamma)) lines(convert(e,log(f(gamma[i]),10),current),col=cols[i]) 
  txt <- paste0("bquote(gamma==",gamma,")") 
  xy <- convert(rev(e)[1]+lx,log(sapply(gamma,function(x)rev(f(x))[1]),10),current) 
  for(i in seq_along(txt)) with(xy,text(x[i],y[i],eval(parse(text=txt[i])),adj=c(0,.5),cex=.6,col=cols[i])) 
   
} 
 
plot2 <- function(alpha,beta,r,tt,e,gamma,isopleth, isoplethGamma, isoplethT){ 
  Risk <- function(lambda,t) 1-exp(-lambda*t) 
  Qstar <- function(gamma,r,e) qgamma(gamma/100,shape=r*e+alpha,rate=e+beta) 
  Q <- function(gamma,r,e,t) Risk(Qstar(gamma,r,e),t) 
  pretty <- function(x){ 
   y <- base::pretty(x) 
   y[y>=min(x)&y<=max(x)] 
  } 
  
  scale <- 1 
  extra <- c(0,0) 
  pagewidth <- (100+2*extra[1])*scale # in mm 
  pageheight <- (100+2*extra[2])*scale 
  cropMargin <- (c(3,3,3,3)+extra[c(2,1,2,1)])*scale # c(bottom,left,top,right) 
  margin <- c(5,5,5,5)*scale # c(bottom,left,top,right) 
  # derivatives 
  framewidth <- pagewidth-sum(cropMargin[c(2L,4L)]) 
  frameheight <- pageheight-sum(cropMargin[c(1L,3L)]) 
  frame <- list( 
    x=cropMargin[2L]+framewidth*c(0L,0L,1L,1L,0L), 
    y=cropMargin[1L]+frameheight*c(0,1L,1L,0L,0L) 
  ) 
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  textframewidth <- pagewidth-sum(margin[c(2L,4L)])-sum(cropMargin[c(2L,4L)]) 
  textframeheight <- pageheight-sum(margin[c(1L,3L)])-sum(cropMargin[c(1L,3L)]) 
  textframe <- list( 
    x=cropMargin[2L]+margin[2L]+textframewidth*c(0L,0L,1L,1L,0L), 
    y=cropMargin[1L]+margin[1L]+textframeheight*c(0,1L,1L,0L,0L) 
  ) 
  textheight <- diff(range(textframe$y)) 
  textwidth <- diff(range(textframe$x)) 
  tcl <- cropMargin[1L]/2 
  vCropTicks <- data.frame( 
    x0=cropMargin[2L]+(pagewidth-sum(cropMargin[c(2L,4L)]))*c(0,1,1,0), 
    x1=cropMargin[2L]+(pagewidth-sum(cropMargin[c(2L,4L)]))*c(0,1,1,0), 
    y0=c(0,pageheight-tcl)[c(1L,1L,2L,2L)], 
    y1=c(0,pageheight-tcl)[c(1L,1L,2L,2L)]+tcl 
  ) 
  hCropTicks <- data.frame( 
    x0=c(0,pagewidth-tcl)[c(1L,1L,2L,2L)], 
    x1=c(0,pagewidth-tcl)[c(1L,1L,2L,2L)]+tcl, 
    y0=cropMargin[1L]+(pageheight- sum(cropMargin[c(1L,3L)]))*c(0,1,1,0), 
    y1=cropMargin[1L]+(pageheight-sum(cropMargin[c(1L,3L)]))*c(0,1,1,0) 
  ) 
  #lapply(vCropTicks,range) 
  #lapply(hCropTicks,range) 
  # plotting 
  #dev.new(width=mm2inch(pagewidth),height=mm2inch(pageheight)) 
  par(mar=rep(0,4L)) 
  #par(family="Palatino") 
  par(family="Times") # or download other fonts 
  plot(c(0,pagewidth),c(0,pageheight),type='n',axes=FALSE,xlab='',ylab='',bty='n',yaxs='i',xaxs='i') 
  if(FALSE){ 
    lines(frame,lty=2,lwd=.2) 
    lines(textframe,lwd=.2) 
    do.call(function(...) segments(...,lwd=.2),vCropTicks) 
    do.call(function(...) segments(...,lwd=.2),hCropTicks) 
  } 
  targetframe <- list(x=min(textframe$x)+c(0.08,0.08,1,1,0.08)*diff(range(textframe$x)),y=textframe$y) 
  convert <- function(x,y,current=list(x=c(0,0,1,1,0),y=c(0,1,1,0,0)),target=targetframe){ 
    ry <- (y-min(current$y))/diff(range(current$y)) 
    ny <- ry*diff(range(target$y))+min(target$y) 
    rx <- (x-min(current$x))/diff(range(current$x)) 
    nx <- rx*diff(range(target$x))+min(target$x) 
    return(data.frame(x=nx,y=ny)) 
  } 
  # settings 
  lgamma <- gamma[1] 
  ugamma <- gamma[2] 
  lA <- log(Qstar(lgamma,r,e),10); lA 
  log(Qstar(lgamma,r,e),10);lA #lA 
  uA <- log(Qstar(ugamma,r,e),10); uA 
  t_sq <- seq(tt[1],tt[2],by=1)#seq(1,10,by=1) 
  lB <- log(min(t_sq),10) 
  uB <- log(max(t_sq),10) 
  rr <- (uB-lB)/(uA-lA+uB-lB) 
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  # functions 
  A <- function(gamma){ 
    log(Qstar(gamma,r,e),10) 
  } 
  B <- function(t) log(t,10) 
  C <- function(P) log(-log(1-P/100),10) 
  x1 <- function(lambda) rep(0,length(lambda)) 
  y1 <- function(lambda) (log(lambda,10)-lA)/(uA-lA) 
  x3 <- function(t) rep(1,length(t)) 
  y3 <- function(t) (B(t)-lB)/(uB-lB) 
  x2 <- function(Risk) rep(rr,length(Risk)) 
  y2 <- function(Risk) (log(-log(1-Risk),10)-(lA+lB))/((uA+uB)-(lA+lB)) 
 
  # check: 
  y1(Qstar(lgamma,r,e)) # 0 (correct) 
  y1(Qstar(ugamma,r,e)) # 1 (correct) 
  y3(min(t_sq)) # 0 (correct) 
  y3(max(t_sq)) # 1 (correct) 
  y2(Risk(Qstar(lgamma,r,e),min(t_sq))) # 0 (correct) 
  y2(Risk(Qstar(ugamma,r,e),max(t_sq))) # 1 (correct) 
 
  axis1 <- data.frame(x=c(0,0),y=c(0,1)) # lambda; level of 'confidence' (gamma) 
  axis3 <- data.frame(x=c(1,1),y=c(0,1))# event risk upper bound 
  axis2 <- data.frame(x=c(rr,rr),y=c(0,1)) # experience / number of years since baseline 
  with(with(axis1,convert(x,y)),segments(x0=x[1],y0=y[1],y1=y[2])) 
  with(with(axis2,convert(x,y)),segments(x0=x[1],y0=y[1],y1=y[2])) 
  with(with(axis3,convert(x,y)),segments(x0=x[1],y0=y[1],y1=y[2])) 
 
  # Time 
  xy <- convert(x3(t_sq),y3(t_sq)) 
  with(xy,segments(x0=x,x1=convert(x3(t_sq)-1/50,NA)$x,y0=y)) 
  with(convert(x3(t_sq)-1.5/50,y3(t_sq)),text(x,y,t_sq,adj=c(1,.5),cex=.8)) 
  with(convert(x3(0)-4/50,.5),text(x+12,y,srt=90,bquote("Time "*italic(t)*" (years) at which risk is 
evaluated"),adj=c(.5,0),cex=.8)) 
 
  # secondary tick marks 
  tm <- t_sq 
  tm <- unlist(lapply(seq_along(tm[-1]),function(i)tm[i]+(1:9)/10)) 
  xy <- convert(x3(tm),y3(tm)) 
  #wh <- pmin(abs(y3(tm)-c(-Inf,y3(tm[-length(tm)]))),abs(y3(tm)-c(y3(tm[-1]),-Inf)))>=1e-2 
  wh <- 1:(9*5) 
  with(xy[wh,],segments(x0=x,x1=convert(x3(tm)-1/100,NA)$x,y0=y,lwd=1)) 
 
  # Confidence 
  gamma_sq <- pretty(gamma) 
  lamb <- Qstar(gamma_sq,r,e) 
  log(Qstar(lgamma,r,e),10);lA #lA 
  xy <- convert(x1(lamb),y1(lamb)) 
  with(xy,segments(x0=x,x1=convert(x1(lamb)-1/50,NA)$x,y0=y)) 
  with(convert(x1(lamb)-1.5/50,y1(lamb)),text(x,y,paste0(gamma_sq,""),adj=c(1,.5),cex=.8)) 
  with(convert(x1(0)-6.5/50,.5),text(x,y,srt=90,"Cumulative probability (%)",adj=c(.5,1),cex=.8)) 
 
  # Risk 
  logR_l <- log(Risk(Qstar(lgamma,r,e),min(t_sq)),10) 
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  logR_u <- log(Risk(Qstar(ugamma,r,e),max(t_sq)),10) 
  logR_lower <- ceiling(logR_l) 
  logR_upper <- floor(logR_u) 
  Risk_sq <- 10^(seq(logR_lower,logR_upper,by=1)) 
  xy <- convert(x2(Risk_sq),y2(Risk_sq)) 
  with(xy,segments(x0=x,x1=convert(x2(Risk_sq)-1/50,NA)$x,y0=y)) 
  txt <- paste0("bquote(1/10^{\"",formatC(-log(Risk_sq,10),format="f",digits=1),"\"})") 
  for(i in seq_along(txt)) with(convert(x2(Risk_sq)-1.5/50,y2(Risk_sq)), 
    text(x[i],y[i],eval(parse(text=txt[i])),adj=c(1,.5),cex=.8)) 
  with(convert(x2(0)-9/50,.5),text(x-2,y,srt=90,"Event risk",adj=c(.5,1),cex=.8)) 
  # secondary tick marks 
  rsk <- 10^seq(floor(logR_l),ceiling(logR_u),by=1) 
  rsk <- unlist(lapply(seq_along(rsk[-1]),function(i)rsk[i]*(2:9))) 
  rsk <- rsk[log(rsk,10)>=logR_l&log(rsk,10)<=logR_u] 
  xy <- convert(x2(rsk),y2(rsk)) 
  with(xy,segments(x0=x,x1=convert(x2(rsk)-1/100,NA)$x,y0=y,lwd=1)) 
 
  # Example isopleth 
  if (isopleth && isoplethGamma >= lgamma && isoplethGamma <= ugamma && 
      isoplethT >= tt[1] && isoplethT <= tt[2]) { 
    conf <- quantile(gamma,(isoplethGamma-lgamma)/(ugamma-lgamma)) 
    tm <- quantile(t_sq,(isoplethT-tt[1])/(tt[2]-tt[1])) 
    lamb <- Qstar(conf,r,e) 
    lines(convert(x=c(x1(lamb),x3(tm)),y=c(y1(lamb),y3(tm))),lty=2) 
    #points(convert(x2(Risk(lamb,tm)),y2(Risk(lamb,tm)))) 
    Risk(lamb,tm) 
  } 
} 
 
 
# --------- 
 
library(shiny) 
 
ui <- navbarPage( 
  # Application title 
  title = "Limited evidence and implicitly accepted risk", 
  id="navbar", 
  tabPanel(title="Figure 1", 
    sidebarPanel(h3("General (layout) settings"), 
    numericInput("Time","Time horizon (time in years at which risk is evaluated)",min=1,value=1,step=1)), 
    sidebarPanel(h3("Observed data"), 
    numericInput("EmpiricalEventRate","Empirical event rate (observed number of events / cumulative device 
experience)",min=0,value=0,step=.001), 
    numericInput("CumulativeExperience","Maximum cumulative device experience, in person-
years",min=0,value=3000,step=200)), 
    sidebarPanel(h3("Prior distribution parameters"), 
    numericInput("alpha","Alpha",min=0,value=1), 
    numericInput("beta","Beta",min=0,value=0)), 
    mainPanel(plotOutput("Plot")) 
  ), 
  tabPanel(title="Figure 2 (nomogram)", 
    sidebarPanel( 
      h3("General (layout) settings"), 
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      sliderInput("Gamma","Range of gamma",min=0,max=100,value=c(50,99),step=1), 
      sliderInput("Time2","Range of times (in years) at which risk is evaluated",min=1,max=100,value=c(1,10),step=1), 
      checkboxInput("isopleth", "Draw isopleth", value = TRUE), 
      numericInput("isoplethGamma","Draw line from Gamma value",min=0,value=80,step=1), 
      numericInput("isoplethT","to time value",min=1,value=5,step=1) 
 
    ), 
    sidebarPanel(h3("Observed data"), 
      numericInput("EmpiricalEventRate2","Empirical event rate (observed number of events / cumulative device 
experience)",min=0,value=0,step=.001), 
      numericInput("CumulativeExperience2","Cumulative device experience, in person-years",min=0,value=800,step=200) 
    ), 
    sidebarPanel( 
      h3("Prior distribution parameters"), 
      numericInput("alpha2","Alpha",min=0,value=1), 
      numericInput("beta2","Beta",min=0,value=0) 
    ), 
    mainPanel(plotOutput("Plot2")) 
  ), 
  tabPanel(title="Quit",value="stop",icon=icon("circle-o-notch")) 
) 
 
res <- 125 
# Server logic 
server <- function(input,output,session){ 
  observe({if(input$navbar=="stop") stopApp()}) 
  output$Plot <- renderPlot({ 
   alpha <- input$alpha 
    beta <- input$beta 
    tt <- input$Time 
    e <- seq(0,input$CumulativeExperience,length=500) 
    r <- input$EmpiricalEventRate 
    gamma <- seq(55,95,by=10) 
    plot1(alpha,beta,r,tt,e,gamma) 
  },width=mm2inch(pagewidth)*res,height=mm2inch(pageheight)*res,res=res) 
  output$Plot2 <- renderPlot({ 
   alpha <- input$alpha2 
    beta <- input$beta2 
    tt <- input$Time2 
    e <- input$CumulativeExperience2 
    r <- input$EmpiricalEventRate2 
    gamma <- input$Gamma 
    isopleth <- input$isopleth 
    isoplethGamma <- input$isoplethGamma 
    isoplethT <- input$isoplethT 
    plot2(alpha,beta,r,tt,e,gamma,isopleth, isoplethGamma, isoplethT) 
  },width=mm2inch(pagewidth)*res,height=mm2inch(pageheight)*res,res=res) 
  session$onSessionEnded(function()stopApp()) 
} 
 
app <- shinyApp(ui,server) 
#runApp(app) 
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5 Summary and conclusions 
Considering the limited resources available, the portion that could be allocated to this task was limited. 

In addition, an early change of personnel affected the task team composition. Though, task leaders have 

promptly notified the Coordinator and the Consortium and have put the appropriate mitigation actions 

as swiftly as they could.  

In the present deliverable the LUMC team (led by Ewout Steyerberg and colleagues) has described an 

algorithm that can be used by manufacturers, notified body assessors and regulators to evaluate the 

implications for risk from studies of devices that may have limited sample sizes and/or statistical power. 

The utility and usability of such tool will be tested and developed in further collaborations within the 

consortium during 2023. Although further contributions will not be funded by the CORE-MD grant, the 

investigators have also offered to advise on statistical questions raised by the systematic reviews 

performed in Task 1.1, after these have been completed.  

A statistical review of methods for applying objective performance criteria is pending, thus an updated 

version of this deliverable will be provided during the second reporting period and submitted to the 

attention of the EC and the reviewers. 
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