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The European CORE–MD consortium (Coordinating Research and Evidence for Medical Devices)
proposes a score for medical devices incorporating artificial intelligence or machine learning
algorithms. Its domains are summarised as valid clinical association, technical performance, and
clinical performance. High scores indicate that extensive clinical investigations should be undertaken
before regulatory approval, whereas lower scores indicate devices for which less pre-market clinical
evaluation may be balanced by more post-market evidence.

Artificial Intelligence (AI) in all its forms is being used increasingly in
healthcare and medicine by both caregivers and patients/citizens1. Until
recently most applications were supporting diagnosis (analysing electro-
cardiograms, imaging, pathological specimens, skin lesions, and retinal
pictures, etc.) but now AI methods are being employed in addition to
estimating prognosis and predict the effects of treatment (personalisation);
to detect and extract health data (using natural language processing); to
assist in drug development; to monitor patients remotely; to communicate
with patients (chatbots); and to personalise therapy through digital ther-
apeutics and digiceuticals. Many more uses arrive each day2. Besides direct
medical applications, the roles of AI are expanding into medical research,
training (also via extended reality), public health, administration, and
logistics. AI drives robotics and automates procedures and interventions,
offering promise formore lean and efficient healthcare3,4. Early applications
of large language models (LLM) and the possibilities of foundation models
are being explored and used in clinical contexts, but they are not covered by
this document.

Several individuals and institutions have warned of risks associated
with the unbridled use of AI5, or even suggested a temporary ban on further
development. The European Union (EU) has developed horizontal laws
relevant to healthcare and AI, such as the General Data Protection

Regulation (GDPR), theArtificial IntelligenceAct, and theEuropeanHealth
Data Space Regulation6. More importantly, medical device software
(MDSW) that incorporates AI algorithms, whether it is standalone or
integrated within a diagnostic or high-risk therapeutic device, requires
conformity assessment for regulatory purposes before it is approved as a
medical device for general use in clinical practice. In the EU the principles of
device evaluation are prescribed by the Medical Device Regulation (MDR)
and the In Vitro Diagnostic Medical Devices Regulation (IVDR), while
worldwidemost jurisdictions andmany standards organisations and expert
groups are also developing guidance6.

European guidance for MDSW7 is based on international recom-
mendations but does not comprehensively describe the specific clinical
evidence needed for medical AI software. Thus there is a need for recom-
mendations for the regulatory evaluation of AI MDSW, that could balance
its potential formajor beneficial impacts in healthcare against the possibility
for its misuse and negative effects on individuals and society.

In the EU, producing guidance is the responsibility of the Medical
Device Coordination Group (MDCG) (Article 105 MDR), which is com-
posed of representatives from national regulatory agencies and chaired by
the European Commission. A call from the Horizon 2020 programme
sought external expert advice onmethodologies for the clinical investigation
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of high-risk medical devices including those incorporating AI. The
CORE–MD project (Coordinating Research and Evidence for Medical
Devices) established a task force for that specific objective – namely to
outline methodological principles for the clinical evaluation of AI MDSW
during its full life cycle, applying a risk-benefit approach and focusing on
pre- and post-release phases from both regulatory and end-user
perspectives8. This article presents its final recommendations.

Methods
Membership
The task force was led by KU Leuven and composed of CORE–MD
consortiummembers and others invited because of their complementary
expertise. Backgrounds and relevant experience encompassed clinicians
who have used AI to analyse medical images and other data types, clin-
icians qualified in computer science or as authors of relevant expert
consensus statements, biomedical, electronics and informatics engineers,
specialists inmedical technology and regulatory science, lawyers expert in
EU legislation and ethical considerations, and doctors from EU national
regulatory agencies for medical devices. Manufacturers were not primary
members of the CORE–MD consortium but their trade associations were
represented on its international advisory board and so for this task,
advisers were included because of their participation in international
standards-setting bodies.

Review of existing guidance
A comprehensive analysis was undertaken of definitions, recommenda-
tions, and standards relating to the use of AI in healthcare and medical
devices, published by national, European, and global organisations. The
resulting publication includes details of the search strategies that were used6.
It was concluded that the level of clinical evidence should be determined
according to each application and should consider factors that contribute to
risk, including accountability, transparency, and interpretability. Some
principles are summarised below as the rationale for developing a risk score
to guide proportionate clinical evaluation of AI MDSW.

Delphi consensus
After a series of strategy meetings among the members of the task force,
the first version of the report was drafted inOctober 2022, and a two-stage
Delphi process was organised throughout 2023. The meetings were held
online; 33 clinical experts participated in the first session and 26 in the
second one. Round 1 consisted of 11 voting statements and one free-text
question; each was introduced briefly by the task leader, before inde-
pendent voting. The threshold for statements to be adopted was 70% of
positive responses. During Round 2, six statements that did not achieve
70% positive responses at the first vote, were revised and resubmitted to
the experts. Participants were also invited to comment on the draft report.
All statements that achieved consensus were integrated into this
recommendation.

Consultations with regulators and notified bodies
The draft proposal was circulated with an explanatory note to members of
theClinical InvestigationandEvaluation (CIE) andNewTechnologies (NT)
Working Groups of the MDCG of the European Commission. Its key ele-
ments were presented by the task leader and the scientific coordinator of
CORE–MD at meetings of CIE in April and November 2023, and at NT in
June and December 2023. In parallel, the updated CORE–MD recom-
mendations were sent to regulators and notified bodies, members of the
consortium, and a team in the Joint Research Centre (JRC) of the European
Commission (in Ispra, Italy) that is studying AI in medical technology9.
Finally, the proposals were presented to a meeting of the CORE–MD
Advisory Board, and in a discussion with leadership of the International
MedicalDeviceRegulators Forum(IMDRF)WorkingGrouponAImedical
devices. Account was taken of all comments received.

Details of this methodology are provided in Supplementary Informa-
tion Section 2.

Considerations for regulating AI medical devices
Quality and transparency of clinical decisions
Healthcare providers apply evidence-based guidelines to optimise approa-
ches to specific medical problems10. Common approaches can help practi-
tioners improve patient-relevant outcomes, maximising the health of
individuals and the population11. Deviation from guidelines may be war-
ranted on the basis of patients’ unique backgrounds, needs or expectations,
in which case healthcare professionals (HCP) should be able to justify their
decisions to thepeople affected.AIMDSWcanbe apowerful support tool to
minimise unwanted variation, which is inherent in human judgements and
decision-making12. For it to earn the trust of end-users (citizens, patients,
and HCPs) the AI MDSW must have undergone appropriate clinical eva-
luation and be compliant with the relevant MDR requirements. In many
circumstances, the information provided can then enable real informed co-
decision-making between the patient and HCP, whether for diagnostic or
therapeutic options.

Human oversight
The autonomy of AI systems and the degree of possible human supervision
vary greatly, somost commentators stress the need to integrateAI tools into
existing workflow, creating a ‘Human–AI team’13. Interpretation and
oversight can become difficult or even impossible whenAI systems perform
as ‘black boxes’14 with their logic remaining obscure even when explain-
ability methods, which often remain inadequate, are applied15–23. Oversight
may be less effective for less experienced users who paradoxically might
benefit the most from such tools24. It is exactly for this reason we have
recommended transparency of all input data and continued evaluation of
the diagnostic performance of such algorithms.

On the other hand, providing real-time human oversightmight reduce
safety and decrease the performance of an AI tool25 whose capabilities
exceed the human and the human–AI team in terms of speed (faster
reaction times), performance (more accurate and precise), being less prone
to errors andmore consistent. It remains, however, the sole responsibility of
the caregiver, together with the patient, to co-decide about preventive,
diagnostic or therapeuticmeasures usingAI tools, while taking into account
the patient’s values, social and lifestyle factors, culture and accessible
resources.

Some AI tools are available as apps to be used by citizens and patients
without any involvement of HCPs, in which case oversight depends on the
end-user26. Human oversight can be very effective and appropriate inmany
circumstances, but that should not be used to shift responsibility and
accountability for the output of AIMDSW from themanufacturer solely to
the supervising human. Decisions mostly depend on the context of use and
are made by clinical teams of HCPs so it would be more appropriate to
consider liability at the level of themanufacturer and the organisation using
theMDSW.Aswith all medical tools, AIMDSWshould be evaluated in the
intended population for the specific purpose with appropriate clinical
investigations before implementation. It is the goal of this article to provide a
practical guide as to how and in what phase of the AI life cycle such
investigations should be performed.

On-market adaptive approaches
The implementation of the objectives of personalised medicine may be
supported by AI tools that adapt to specific use settings and patients’
characteristics, after they have been placed on the market, by using a
learning approach to adjust their parameters with continuous or inter-
mittent implementation of changes. The high complexity of the post-release
phase of AIMDSWmakes AlgorithmChange Protocols challenging27. Any
drift in the intendeduse of anAI algorithmor in the targetpopulationwhere
it is applied, perhaps because of evolving clinical practice, could change its
risk and performancemetrics. Additional data need to be collected and used
to adapt the algorithm, which necessitates continuous evaluation after its
release. An agile approach to the development, testing, and validation of AI
tools28,29 preferably with a system view rather than a pure device focus30–32,
should be facilitated by regulatory standards.
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Similarity with clinical judgement
To better understand how an AI decision-support tool could be positioned
in the clinical workflow, the tool can be compared to a clinical colleague
from whom one receives advice before deciding on a diagnostic or ther-
apeutic action. No one is infallible but a clinical colleague is trusted because
of their verified licence, education, training, competence, ethical principles,
and experience.AnAIMDSWdeveloper should provide similar proof, with
documentation of safety and performance and verification by a notified
body, as required in the EU by the MDR (and by the AI Act), and with
clinical evaluation showing a positive balance between predefined benefits
and any associated risks. That will not guarantee that the MDSW will
function without any errors, but it should support improved outcomes at a
reasonable cost compared to othermethods, leaving the final co-decision to
the patient and the HCP.

Results and recommendations
Process endorsed
Almost all experts (90%) consulted in theDelphi process supported the risk-
benefit-based approach for evaluating AI medical devices, and 80% sup-
ported the concept of a scoring system to guide requirements for clinical
evidence (see Supplementary Information Section 2). Most (88%) also
concurred with the recommendation that low-risk AI medical devices
showing a clear benefit could be brought to themarketwith graded evidence
and formal requirements for post-market follow-up. There was no con-
sensus among the consortiummembers to incorporate in this proposed text
the alternative approach that has been adopted by some regulators [such as
the Food and Drug Administration (FDA)] of certifying software compa-
nies on the basis of their quality-control systems and adapting the
requirements for specific MDSW release depending on such certification.
Such a mechanism could make it very difficult, if not impossible, for small
and medium-sized enterprises and academic institutions to comply with
these requirements.

Risk-based approach
Transparency is key in all healthcare interactions. When using AI MDSW,
the HCP should be completely open to the patient about its use and about
inherent benefits and disadvantages including explainability or lack thereof,
the technical and clinical evidence supporting its use, any alternatives, and
the consequencesof non-use. For this, of course, theHCPneeds access to the
evidence supporting the claims for the AI MDSW for its defined purpose.

The balance between positive outcomes and possible safety risks or side
effects needs to be considered at both the individual and the societal level.
Whendemonstrating clinicalbenefit and/or improvedefficiency inworkflow,
individual and societal human rights might conflict to a certain degree, so
ethical considerations are paramount33–36. Medical device legislation requires
compliance with safety and performance requirements, with a positive
benefit-risk balance taking into account the acknowledged state of the art37.

Whenevaluating anewAI tool in the context of thepresent state of the art, the
tool must demonstrate an improved benefit-risk ratio, while keeping the
absolute risk as low as possible. Implementing a new tool involves managing
both an operational and a cultural change, whichmay be difficult for the end-
users to accept, so a comparison of risks is crucial for reaching a decision.

Manufacturers are required to justifywhy the clinical evidence for their
AI tool, which they provide, is appropriate and conforms with standards.
European guidance, in line with recommendations from the IMDRF,
considers three aspects to be crucial for the safe and effective use of MDSW
(and by implication AI): valid clinical association, technical performance,
and clinical performance7.

Defining risk
Risk is a composite of the probability of an event and its severity. Specific
challenges for managing risks of AI tools, at every stage in their life cycle,
may include:

(1) difficulty in defining and measuring negative impact or magnitude
of harm;

(2) tolerance of risks due to societal acceptance and preferences;
(3) having to consider not just absolute risk but also the culture about

taking and allowing risks in the specific use environment;
(4) considering additional factors such as cybersecurity and privacy.

The goal is to optimise the benefit-risk balance for the end-user(s) by
applying the best processes for ‘TEVV’ (test, evaluation, verification and
validation).

The stages of developing and implementing AI MDSW have been
described by the National Institute of Standards and Technology (NIST) in
the USA as: Data and Input; AI Model; Task and Output; and Application
context38–42. These have been adapted into 8 phases as represented by the
colouredboxes in Fig. 1. Ideally, trustworthyAI should be valid and reliable,
safe, secure and resilient, accountable and transparent, explainable and
interpretable, privacy-enhanced, and fair with harmful biases managed43.

AI tools need to be trained and tested on representative datasets
reflecting the context of intended use44,45, and certain supervised ML algo-
rithms need good-quality labels determined by human annotators for use as
reference (or ground truth). The collection of datasets that contain personal
information is subject to the requirements of the EUGeneralData Protection
Regulation46,47. The use of datasets for developing AI tools and their need for
curation necessitate extra attention concerning their validity, intrinsic bias
(i.e. by ethnicity, sex, age group, etc.), representativeness of patient popula-
tions, geographic distribution of data sources, and quality of the labels.

A comprehensive list of factors that can influence risk is given in
Supplementary Information Section 1. For a given AI tool, some or all of
these factors will be relevant but usually with variable impact on the overall
benefit-risk balance, depending on the application domain and the context

Fig. 1 | Relationship between components of the
CORE–MD Risk Score and the stages of develop-
ment and implementation of AI MDSW. The
relationship between components of the
CORE–MD Risk Score [CPS Clinical performance
score; VTPS Valid Technical performance score;
andVCASValid clinical performance score] and the
stages of development and implementation of AI
MDSW (adapted from NIST42,62,63) which they have
been designed to reflect. The blue vertical lines show
the possible timing of CE certification in Europe;
depending on the Risk Score, CE certification can be
obtained with the pilot (lower risk, certificate with
conditions; first line) or with full comparative
(higher risk) clinical evaluation (second time-line),
always with appropriate post-release evaluation.
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of use. A manufacturer should position its AI tool with respect to all these
factors, to specify what evidence will be required before approval and what
should be collected after release. This information will also inform the end-
user when deciding whether to use the tool in the clinical environment.

Balancing safety with access
Individuals and patients should not be exposed to MDSW with unac-
ceptable risks. There have been cases where AI or MDSW applications in
healthcare heightened risks for individuals. For example, a US class-action
lawsuit against Healthcare United alleged that their AI algorithm (“nH
Predict”)was issuingwrongful denials of claims for extended care for elderly
patients (https://www.forbes.com/sites/douglaslaney/2023/11/16/ai-ethics-
essentials-lawsuit-over-ai-denial-of-healthcare/). In another case, involving
IBMWatson for Oncology, possible unacceptable risks for medical device
software were caused by AI-based systems providing wrong recommen-
dations to doctors for treating cancer15. ManyAI tools, however, could offer
a relevant benefit for unmet needs without conveying significant risk. Not
offering such MDSW tools, due to excessive regulatory demands, could
disadvantage individuals who would have benefited48. Manufacturers could
decide not tomarket their AImedical device in the EU if it is perceived that
the burden for CE-marking is too high.

AI toolswith a favourable clinical benefit-risk ratio and a low level of risk
to individuals and society, as indicated by the scoring systemproposed in this
advice, couldbe approvedwith appropriate gradedor stratified evidence. Pre-
market studies focused mainly on statistical significance and less on clinical
relevance, which could be balanced by more emphasis on gathering data in
the post-market phase to support the clinical usefulness. Some low-risk tools,
or new releases of existing tools providing usability or other improvements,
could be approved without additional studies in patients and with only
technical and scientific proof of the desired change or outcome.

Amanufacturermight release a lower-riskAI toolwith evidence froma
study powered for the general target population but not for subpopulations/
minority groups.Where the evidence for suchgroups is limited, patients and
users should be made aware of these limitations as appropriate. In contrast,
tools with a high risk to individuals or society should undergo extensive

clinical evaluation before release, including clinical investigations or trials. If
it is difficult or impossible to show benefit, either directly to patients’ out-
comes or indirectly by improving efficiency for the interactions between
HCPs and patients, then any risk, however small, would be unacceptable.

Surveillance of risk
In either case –whether anAI tool is initially approvedwith graded ormore
extensive evidence – continued evaluation of its benefit-risk ratio is neces-
sary because of potential drifts over time in its intended or actual use, in the
target population, and/or in its verifiability by humans. The representa-
tiveness and quality of additional real-world data about the accuracy and
performance of the tool need to be demonstrated, evaluated and validated.
In contrast to hardware devices, it would be an advantage if such evaluation
could be built into theMDSW49 although thatwould require specification of
new criteria to be assessed by notified bodies. If post-release evidence
(algorithmic vigilance)50 reveals thatAIMDSWis negatively influencing the
benefit-risk ratio, then stricter regulatory follow-up should ensure that it is
withdrawn.Reimbursement decisionswould also require reconsiderationof
new evidence during the post-release phase.

End-users of an AI tool (citizens, patients, and HCPs) should be
informed about benefit-risk evaluations and their consequences for certi-
fication and access to the market. Transparency is essential for continued
trust in a specific tool and in the process as awhole. The quality of submitted
evidence should always be high for both pre-release and post-market
requirements, and whether data are acquired retrospectively or pro-
spectively, should be determined by analysis of possible benefits and risks.

Estimating risk – scoring system
We propose a simple point-scoring system to estimate the overall risk of an
AI tool. It is composed of three parts, that allow assessment of the tool
during its whole life cycle. Its components – valid clinical association score
(VCAS), valid technical performance score (VTPS), and clinical perfor-
mance score (CPS) – have been developed using the terms and definitions
for categories of evidence given in MDCG guidance 2020-17, which are
described inTable 1. Although they are specific to the EU regulatory system,

Table 1 | Components of the CORE–MD AI Risk Score

Criterion and explanation Level Score
Valid clinical association score VCAS

How can transparency and oversight be achieved?
The MDSW output should have a clear and valid association with its targeted indication
(clinical condition or physiological state).

Strong association with easy human oversight and full
transparency

1

Moderate association with difficult human oversight and
incomplete transparency

2

Weak association without the possibility for human oversight and
absent transparency

3

Valid technical performance score VTPS

How has the MDSW been validated and tested?
The MDSW should be capable of generating technical or analytical output that accurately
and reliably reflects the input.

Strong with broad external validation 1

Moderate with narrow external validation 2

Weak with only internal validation 3

Clinical performance score CPS

What is the context of the use of the MDSW?
Type of disease, condition, disability, or healthcare situation; risk (impact) for the patient.

Non-serious 1

Serious 2

Critical 3

What is the medical function of the output?
TheMDSWshould generate clinically relevant output or benefitswhen it is used as intended.

Inform 1

Drive 2

Diagnose or treat 3

Maximum from the two subscores 6

MDSWmedical device software.
The definitions of ‘valid clinical association’ and ‘valid technical performance’were adaptedwithminormodifications from the IMDRFguidance onSoftware as aMedical Device (SaMD): Clinical Evaluation
(2017). [IMDRF/SaMDWG/N41FINAL:2017]57, and from MDCG 2020–1: Guidance on Clinical Evaluation (MDR) [‥] of Medical Device Software7.
Definitions of the criteria in the clinical performance scorewere derived from the IMDRF guidance on Software as aMedical Device (SaMD): Clinical Evaluation (2017). [IMDRF/SaMDWG/N41FINAL:2017].
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they are well aligned with the IMDRF guidance. We propose that the total
score (with possible values from 4 to 12) should be linked to requirements
for clinical evaluation before and after an AI tool is approved. Lower values
are associated with less risk. The relationships of the three risk scores with
the life cycle phases, the timing of the pre- and post-release phases, and the
possible timings of CE certification (vertical blue lines) are indicated in
Fig. 1.

This approach could seem like an oversimplification but it is intended
firstly to help manufacturers, notified bodies, and clinicians to prioritise
efforts for evaluating new AI MDSW, and secondly to avoid unnecessarily
limiting access to potentially helpful AI tools that are low-risk. The score
does not deflect from the need for regulatory appraisal of the entire AI
benefit-risk evaluation during the certification process. It does not consider
if the manufacturer of an AI tool intends to have its output validated by a
‘human-in-the-loop’, since that would depend too much on the user’s
(unknown) expertise and experience. In our view, planning output ver-
ification by a human, irrespective of the capability of the human to effec-
tively perform such oversight, is not currently sufficient to designate a
medical AI tool as low-risk; there are not yet rigorous and repeatable
methods to ensure that explainability is delivered to users (either theHCPor
patient) in amanner that truly assists them in recognising poor advice from
AI systems, or for the prevention of automaton bias. There are also not yet
implementable approaches for evaluating the safety of the explainability of
AI MDSW. Should such approaches later be developed, the scoring system
can be adapted to take appropriate account of these developments. In all
circumstances it should be completely transparent to the end-users, both
clinicians and patients, if the AI tool is explainable or not, and how rigor-
ously the validationand testingwereperformed, inorder to support the trust
they can put into the results of the tool.

Valid clinical association score (VCAS). The valid clinical association is
defined as “the extent to which the MDSW’s output (e.g. concept, con-
clusion, calculations), based on the inputs and algorithms selected, is
associated with the targeted physiological state or clinical condition. This
association should be well founded or clinically accepted”51. The clinical
association may be characterised by the type of AI model (e.g. supervised
or unsupervised), the availability of ground truth to train and test the
algorithm, its transparency and explainability, and the possibility for
human oversight (see item 4b in the Supplementary Information Sec-
tion 1).

As an example, in the case of an unsupervised AI model in which data
are clustered tofindapossible relationship among the extracted features, but
without the presence of ground truth, a subscore in this category of 3
(impossible) would be assigned. If following the preliminary association,
another andmore specific scientific study has been conducted to prove such
apparent relationships, then the strength of its results could modulate the
relevant VCAS score to being 1 (easy) or 2 (difficult).

An example of effective oversight for a deep learning algorithm that is a
‘black box’would be when the output of a diagnostic imaging segmentation
tool is verified by a clinician seeing the contour made by the tool, overlaid
onto the image that it has analysed; that would merit a subscore in this
category of 1 (easy) despite the algorithm itself being uninterpretable.

Valid technical performance score (VTPS). Technical performance is
defined as the “Capability of an MDSW to accurately and reliably gen-
erate the intended technical/analytical output from the input data”.
Verification of technical performance is thus by demonstrating that the
AI tool accurately, reliably and precisely generates the intended output
from the input data, when it is used in the real world in its intended
computing and use environments. Technical performance can be
documented by standard measures for assessing AI tools, such as accu-
racy, specificity, sensitivity, area under the receiver-operating char-
acteristic curve, and F1 score, in the presence of a ground truth. Caution is
neededwith imbalanced datasets, where these standardmetrics are overly
optimistic and can miss poor performance in low-prevalence

conditions52. In such cases, measures such as the area under the
precision-recall curve provide greater robustness to class imbalance and
should be considered instead53. Input characteristics are listed in item 4a
in Supplementary Information Section 1, and features related to output
are given in items 4c–f.

In addition to any metrics, we propose that the grades in the VTPS
should reflect the degree of independence between the training data and the
data used for testing an AI tool, and the breadth of external testing per-
formed. (see Table 1). Machine learning methods are susceptible to iden-
tifying spurious relationships that exist in the training data but are not
present in real-world settings54, resulting in reducedmodel performance on
new data from different settings. Good model performance can be assured
only through testing on data acquired from a range of real-world settings55,
which are truly representative of the settings of intended use, and this is
reflected by the VTPS (Table 1).

‘Internal Validation’means that the performance of the tool has been
tested only on data acquired with the same settings (same institution, using
the same equipment, interpretedby the same observer as the training group,
in the same group of patients, perhaps with bootstrapping) as the training
data. Thiswould produce aVTPSof 3. ‘NarrowExternalValidation’ implies
that the training and testing data were partially differentiated for some of
these factors (VTPS = 2), while ‘Broad External Validation’ signifies that the
performance of the AI tool was evaluated using separate training and (re)
testing datasets (i.e. acquired using different equipment, from different
centres, at different times, interpreted by different observers, in different
patient groups, etc). This would generate a VTPS of 1. Thus the VTPS also
reflects the risk of bias in the performance of an AI model.

Notwithstanding efforts to validate AI tools before approval, unin-
tended generalisation, shortcut learning54, biases in the function of the
algorithm56, and other errors in performance often become apparent only
when theMDSW is used in the real world for its intended indication but in
anunselectedpopulation.Drift in the intendedpurpose andpopulationmay
occur more easily with MDSW than with other devices, so it is imperative
that proper post-release surveillance is conducted. It should document the
context of use, the indication for use, and relevant outcomes, at predefined
time-points after release. Feedback to regulatory authorities and Notified
Bodies should verify the continued performance of theMDSW, andwhen it
becomes necessary to address problems, then interventions should limit use,
lead to a recall, or in theEU suspend the certificate of conformity. Such post-
release surveillance could also include notifications to end-users to alert
them in individual cases if they are using the MDSW outside the validated
indication and context.

Clinical performance score (CPS). Clinical performance is the “ability
of a device, resulting from any direct or indirect medical effects which
stem from its technical or functional characteristics, including diagnostic
characteristics, to achieve its intended purpose as claimed by the man-
ufacturer, thereby leading to a clinical benefit for patients, when used as
intended by the manufacturer”7,51.

A clinical benefit is always required for unrestricted release to the
market; the timing for establishing such benefit, however, depends on the
risk involved in exposing patients to the device. The CPS is used to deter-
mine such timing, either before or after release.

In 2017, IMDRF guidance recommended that the need for an inde-
pendent review of clinical investigations and evidence of the benefit of
MDSW, before regulatory approval, should be determined firstly according
to the function of the software (ranging from informing for a non-serious
condition to treatingordiagnosing in a critical condition) and secondly to its
significance57. These features were summarised in two scales (“Definition
Statement” and “Impact”) but they conflate three characteristics, which are
the function of the MDSW (informs/drives/treats), the stage of the clinical
condition (non-serious/serious/critical), and its potential impact (none/
low/medium/high/catastrophic).Also, the classification systemproposedby
the IMDRF58,59 is very context-dependent. The same disease or condition
may be acute or chronic, with various levels of severity, and influenced by
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comorbidities. A diagnostic tool could be critical when its result determines
treatment for a life-threatening disease, while the same tool would be non-
serious if used for a chronic non-life-threatening illness or with extensive
humanoversight. In practice, the application of anAI toolmay drift from its
original intended purpose (“off-label” use), so it is best from the outset to
consider its most critical possible use when determining the risk score.

The CPS consists of two criteria that should be scored separately and
then combined (see Table 1); they assess the criticality of the healthcare
situation for which the AI tool is intended, and the expected impact of its
output. Together they reflect if the AI tool, when used for its recommended
indication, achieves the clinical benefit that was claimed as its purpose. The

CPS relates to items listed in paragraphs 1–3 and 5–6 in Supplementary
InformationSection1.The relevanceof human factors is underscoredby the
emphasis on human oversight (Supplementary Information Section 1, 4b),
explainability (Supplementary Information Section 1, 4d), and the evalua-
tion of proper integration in the clinical workflow (Supplementary Infor-
mation Section 1, 4e).

Discussion
The overall score, which is the sum of the CPS, VTPS and VCAS (Fig. 2),
indicateswhen an extended evaluation and a higher level of clinical evidence
would be appropriate before approval, or when a less rigorous assessment

Fig. 2 | Relationships between subtotals and a total
of the CORE–MD AI Risk Score and the extent of
clinical evaluation recommended before reg-
ulatory approval. The CPS score should be esti-
mated first since high scores in both of its parts
would mandate more extensive clinical evaluation.
Any subtotals or total scores that have values as
indicated in the orange box, indicate AI medical
devices that merit extensive clinical evaluation
before approval. Values falling within the range
indicated in the green box will apply to AI medical
devices that could be approved for market access
after less extensive, appropriate evaluation.

Fig. 3 | Recommended items to be evaluated and documented for AI medical
device software, before regulatory review, approval, and release – according to
the level of the CORE–MD AI Risk Score. Sections 1–8, and the corresponding
items, are developed from NIST recommendations42,62,63. The green and orange

columns correspond respectively to AI medical devices with lower values of the risk
score, and those with higher values (see Fig. 2). + indicates an item that should be
evaluated during the pre-market stage; – indicates an item that does not need to be
evaluated at this stage.
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would be proportionate before market release (but perhaps with conditions
for collectingmore evidence during post-market clinical follow-up). The 10
principles of Good Machine Learning Practices60 pertain to both
circumstances.

A minimum score of 4 would be awarded to an AI tool that has been
trained and retested using independent datasets from different populations,
gives diagnostic information about a non-serious disease, is fully transpar-
ent, completely interpretable and explainable, and is capable of compre-
hensive human oversight. A low-risk tool with such features can be safely
approved with a basic level of pre-market clinical evidence. On the other
hand, an autonomousAI systemwhich recommends treatment for a critical
conditionbasedon theoutput of a deep learning algorithmthat hasnot been
validated in an independent population and that allows no possibility for
human oversight (earning a maximum score of 12), would clearly be very
high risk. An AI device of that type cannot be approved safely for market
access until it has undergone thorough clinical evaluation, probably
including a randomised trial.

Most AI medical devices will fall between these extreme examples. To
avoid inappropriately early release of anAI toolwith a lowoverall scorebut a
high score on one of the subsets, extended pre-market evaluation is advised
if theCPS score is 5 ormore, or if the sumof the CPS andVTPS is 6 ormore
(see Fig. 2). Thus an AI tool used in a critical situation could fall into the
lower-risk category if its function is only to inform (subtotal for CPS = 4);
any other functionwouldmake it higher risk (≥5). Similarly, anAI decision-
support system that suggests a diagnosis or treatment would be lower risk
only if its use is restricted to non-serious conditions (CPS = 4). If the
technical validation of an AI algorithm has been weak (VTPS = 3) then
initial regulatory approval with less extensive pre-market clinical evidence
could be considered only if its function claimed by the manufacturer is to
inform in a non-serious condition (CPS+VTPS = 5).

Beyond this focus on the CPS and clinical implementation of an AI
medical device, the cumulative risk score described in Fig. 2 can also indicate
requirements for evaluation across all life cycle stages. These are listed in
Figs. 3, 4, opposite eight categories adapted from NIST30. The last two
columns show items that should be evaluated for lower- and higher-risk AI
MDSW, respectively, either before market access (Fig. 3) or after market
access (Fig. 4).

Many official bodies, including the Chinese Authority for Medical
Device Evaluation (the National Medical Products Administration, NMPA
https://www.cmde.org.cn/xwdt/shpgzgg/gztg/20231107153309174.html),
are now engaged in preparing guidelines and recommendations for the use
of AI and ML in medical applications; the main sources of documents
relevant to theEUsystemare illustrated inFig. 5.Within this framework, the
CORE–MD project has no official status, but it was funded by the EU with
the remit to advise on the clinical evaluation of high-risk medical devices.
Representatives from CORE–MD have presented the recommendations in
this paper to both the CIE and NT working groups (see Supplementary
Information Section 2), with a view to advising on the development of
MDCG guidance on the clinical evaluation of AI/ML-enabled medical
devices. The scoring system proposed by this paper will be discussed as part
of a dedicated work package of CIE aimed at integrating CORE–MD out-
puts into the European regulatory system. The recommendations have also
been presented to one of the chairs of the IMDRFAI/MLworking group. A
more detailed account of regulatory initiatives relating to AI and ML-
enabled medical devices is given in an earlier report from the CORE–MD
project6.

Guidance will need to be developed concerning the methodologies of
studies required for each phase. Studies of AI MDSW early in its life cycle
aim at showing the stability of the product, while demonstrating safetymay
be difficult if cohorts are small. Later, comparative studies couldmake use of

Fig. 4 | Recommended items to be evaluated and documented for AI medical
device software, after regulatory approval and release and according to the level
of the CORE–MD AI Risk Score. Sections 1–8, and the corresponding items, are
developed from NIST recommendations42,62,63. The green and orange columns

correspond respectively to AImedical devices with lower values of the risk score, and
those with higher values (see Fig. 2). + indicates an item that should be evaluated
during the post-market stage; – indicates an item that does not need to be evaluated at
this stage.
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real-world approaches, large simple trials, and adaptive designs61. Retro-
spective data can be used for the initial training, testing, and validation of an
AI tool, but prospective clinical investigations will always be required in the
appropriate phases.Medical deviceExpert Panels could play a crucial role in
establishing guidance for clinical evaluation, with participation from
patients and citizens especially when rules for the clinical evaluation of
MDSW in lower-risk classes are being considered; these CORE–MD
recommendations are relevant especially to high-risk AI MDSW.

Evaluation of the potential clinical utility of the CORE–MD AI Risk
Score will need to assess if it is equally applicable to different AI/ML devices
used in different contexts and populations. The use of a new tool may drift,
and it may be used ‘off-label’. All AI/ML devices need to be evaluated to
determine their generalisability; a similar consideration may be important
for this score.

Conclusions
Using a new and simple scoring system for the assessment of risk, we
propose a benefit-risk approach to guide requirements for the clinical
evaluation of AIMedical Device Software, taking into account the entire life
cycle of theMDSWand addressing regulatory requirements and the clinical
evidence needed for trusted use of these devices by patients and caregivers.

By combining regulatory and clinical requirements into one workflow,
and by focusing on the need for real-world evidence for AI MDSW,
including an analysis of the risks involved in human-machine interactions,
we offer a more streamlined approach which can lead to a proportionate
implementation of theMDR requirements, alleviating some of the concerns
about limiting innovation. By emphasising the post-release phase, any

changes or drift in AIMDSW in the clinical environment can be addressed
when and where they occur.

The approach that we recommend should now be evaluated scienti-
fically, and if its utility is confirmed then it could serve as a valuable con-
tributary resource for future EU regulatory guidance. The
recommendations have been developed robustly, in consultation with
regulatory authorities, and further discussions are planned.
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